
8 Vector norms

1. Consider vector spaces R2 and R3. Use
Pitagorian theorem and calculate lengths ‖u‖ and
‖v‖ of vectors u ∈ R2, v ∈ R3, and geometrically
illustrate/show length of these vectors.

Euclidean Vector Norm For a vector x, the
euclidean norm of x is defined to be

• ‖x‖ =
(∑n

i=1 x
2
i

)1/2
=
√
x>x whenever x ∈

Rn,

• ‖x‖ =
(∑n

i=1 |xi|2
)1/2

=
√
x∗x whenever

x ∈ Cn.

2. Find euclidean norm of u = (0,−1, 2,−2, 4)>

and v = (i, 2, 1− i, 0, 1 + i)>. [‖u‖ = 5, ‖v‖ = 3]

3. (a) Using the euclidean norm, describe the solid
ball in Rn centered at the origin with unit radius.
(b) Describe a solid ball centered at the point
c = (ξ1, ξ2, ..., ξn) with radius ρ.

Standard Inner Product The scalar terms de-
fined by

x>y =

n∑
i=1

xiyi ∈ R and x∗y =

n∑
i=1

xiyi ∈ C

are called the standard inner products for Rn and
Cn, respectively.

Cauchy-Bunyakovskii-Schwarz (CBS)
Inequality

|x∗y| ≤ ‖x‖ ‖y‖ for all x,y ∈ Cn.

Equality holds if and only if y = αx for α =
x∗y/x∗x.

Triangle Inequality

‖x + y‖ ≤ ‖x‖+ ‖y‖ for every x,y ∈ Cn.

The Cauchy-Bunyakovskii-Schwarz (CBS)
inequality6 is one of the most important inequalities

in mathematics. It relates inner product to norm.

4. Consider the euclidean norm with
u = (2, 1,−4,−2)> and v = (1,−1, 1,−1). (a)
Determine the distance between u and v. (b) Verify
that the triangle inequality holds for u and v. (c)
Verify that the CBS inequality holds for u and v.

5. (Backward Triangle Inequality.) Show that
|‖x‖ − ‖y‖| ≤ ‖x− y‖.

p-Norms For p ≥ 1, the p-norm of x ∈ Cn is

defined as ‖x‖p = (
∑n

i=1 |xi|p)1/p.

6. To get a feel for the 1-, 2-, and ∞-norms, it
helps to know the shapes and relative sizes of the
unit p-spheres Sp = {x | ‖x‖p = 1} for p = 1, 2,∞.
In space R3 give illustration of the unit 1-, 2-, and
∞-spheres.

7. Find 1-, 2-, and ∞-norms of x = (2, 1,−4,−2)>

and y = (1 + i, 1− i, 1, 4i)>.

General Vector Norms A norm for a real or
complex vector space V is a function ‖ ? ‖ mapping
V into R that satisfies the following conditions.

‖x‖ ≥ 0 and ‖x‖ = 0 ⇐⇒ x = 0

‖αx‖ = |α|‖x‖ for all scalars α,

‖x + y‖ ≤ ‖x‖+ ‖y‖.

8. Show that
(α1 + α2 + ...+ αn)2 ≤ n(α2

1 + α2
2 + ...+ α2

n) for
αi ∈ R.

9. If x, y ∈ Rn such that ‖x− y‖2 = ‖x + y‖2,
what is x>y?

10. Explain why ‖x− y‖ = ‖x + y‖ is true for all
norms.

InC: 1, 4, 6, 9. HW: few problems from the web
page http://osebje.famnit.upr.si/~penjic/

linearnaAlgebra/.

6The Cauchy-Bunyakovskii-Schwarz inequality is named in honor of the three men who played a role in its development.
The basic inequality for real numbers is attributed to Cauchy in 1821, whereas Schwarz and Bunyakovskii contributed by later
formulating useful generalizations of the inequality involving integrals of functions.
mm Augustin-Louis Cauchy (1789-1857) was a French mathematician who is generally regarded as being the founder of math-
ematical analysis-including the theory of complex functions. Although deeply embroiled in political turmoil for much of his life
(he was a partisan of the Bourbons), Cauchy emerged as one of the most prolific mathematicians of all time. He authored at
least 789 mathematical papers, and his collected works fill 27 volumes-this is on a par with Cayley and second only to Euler. It
is said that more theorems, concepts, and methods bear Cauchy’s name than any other mathematician.
mm Victor Bunyakovskii (1804-1889) was a Russian professor of mathematics at St. Petersburg, and in 1859 he extended
Cauchy’s inequality for discrete sums to integrals of continuous functions. His contribution was overlooked by western mathe-
maticians for many years, and his name is often omitted in classical texts that simply refer to the Cauchy-Schwarz inequality.
mm Hermann Amandus Schwarz (1843-1921) was a student and successor of the famous German mathematician Karl Weierstrass
at the University of Berlin. Schwarz independently generalized Cauchy’s inequality just as Bunyakovskii had done earlier.
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9 Inner-product spaces

General Inner Product An inner product on a
real (or complex) vector space V is a function that
maps each ordered pair of vectors x, y to a real (or
complex) scalar 〈x,y〉 such that the following four
properties hold.

• 〈x,x〉 is real with 〈x,x〉 ≥ 0, and

〈x,x〉 = 0 if and only if x = 0,

• 〈x, αy〉 = α〈x,y〉 for all scalars α,

• 〈x,y + z〉 = 〈x,y〉+ 〈x, z〉,

• 〈x,y〉 = 〈y,x〉 (for real spaces, this becomes
〈x,y〉 = 〈y,x〉).

Notice that for each fixed value of x, the second and
third properties say that 〈x,y〉 is a linear function
of y.
Any real or complex vector space that is
equipped with an inner product is called an
inner-product space.

1. For x = (x1, x2, x3)
> and y = (y1, y2, y3)

>,
determine which of the following are inner products
for R3. (a) 〈x,y〉 = x1y1 + x3y3,
(b) 〈x,y〉 = x1y1 − x2y2 + x3y3,
(c) 〈x,y〉 = 2x1y1 + x2y2 + 4x3y3,
(d) 〈x,y〉 = x21y

2
1 + x22y

2
2 + x23y

2
3.

General CBS Inequality If V is an inner-

product space, and if we set ‖ ? ‖ =
√
〈?, ?〉, then

|〈x,y〉| ≤ ‖x‖‖y‖ for all x,y ∈ V.

Equality holds if and only if y = αx for α =
〈x,y〉/‖x‖2.
Norms in Inner-Product Spaces If V is an
inner-product space with an inner product 〈x,y〉,
then ‖ ? ‖ =

√
〈?, ?〉 defines a norm on V.

2. (a) Show that the standard inner products,
〈x,y〉 = x>y for Rn and 〈x,y〉 = x>y for Rn, each
satisfy the four defining conditions above for a
general inner product. (b) Let A ∈ Matn×n(R) be a

nonsingular matrix. Show that 〈x,y〉 = x>A>Ay is
and inner product on Rn. (c) Let V denote the
vector space of real-valued continuous functions
defined on the interval (a, b). Show that

〈f, g〉 =
´ b
a f(t)g(t) dt is an inner product space on

V.

3. For A,B ∈ Matm×n(R), determine is the
following product
〈A,B〉 = trace(A>B) :=

∑n
i=1(A

>B)ii
an inner products for R3.

4. Describe the norms that are generated by the
inner products in Exercises 2 and 3.

5. To illustrate the utility of the ideas presented
above, consider the proposition

trace(A>B)2 ≤ trace(A>A) trace(B>B)

for all A,B ∈ Matm×n(R). How would you know to
formulate such a proposition and, second, how do
you prove it?

Since each inner product generates a norm by the rule

‖ ? ‖ =
√
〈?, ?〉, it’s natural to ask if the reverse is also

true. That is, for each vector norm ‖ ? ‖ on a space V,

does there exist a corresponding inner product on V such

that
√
〈?, ?〉 = ‖ ? ‖? If not, under what conditions will a

given norm be generated by an inner product? These are

tricky questions, and it took the combined efforts of

Maurice R. Fréchet7 (1878–1973) and John von

Neumann (1903–1957) to provide the answer.

Parallelogram Identity For a given norm ‖ ? ‖
on a vector space V, there exists an inner product
on V such that 〈?, ?〉 = ‖ ? ‖2 if and only if the
parallelogram identity

‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)

holds for all x,y ∈ V.

6. Except for the euclidean norm, is any other
vector p-norm generated by an inner product?

InC: 1, 2, 5, 6. HW: 3 + see http://osebje.

famnit.upr.si/~penjic/linearnaAlgebra/.

7Maurice René Fréchet began his illustrious career by writing an outstanding Ph.D. dissertation in 1906 under the direction
of the famous French mathematician Jacques Hadamard in which the concepts of a metric space and compactness were first
formulated. Fréchet developed into a versatile mathematical scientist, and he served as professor of mechanics at the University
of Poitiers (1910–1919), professor of higher calculus at the University of Strasbourg (1920–1927), and professor of differential
and integral calculus and professor of the calculus of probabilities at the University of Paris (1928–1948).
mmBorn in Budapest, Hungary, John von Neumann was a child prodigy who could divide eightdigit numbers in his head when
he was only six years old. Due to the political unrest in Europe, he came to America, where, in 1933, he became one of the
six original professors of mathematics at the Institute for Advanced Study at Princeton University, a position he retained for
the rest of his life. During his career, von Neumann’s genius touched mathematics (pure and applied), chemistry, physics,
economics, and computer science, and he is generally considered to be among the best scientists and mathematicians of the
twentieth century.
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